Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(52): e2301055120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109531

ABSTRACT

Predicting how the range dynamics of migratory species will respond to climate change requires a mechanistic understanding of the factors that operate across the annual cycle to control the distribution and abundance of a species. Here, we use multiple lines of evidence to reveal that environmental conditions during the nonbreeding season influence range dynamics across the life cycle of a migratory songbird, the American redstart (Setophaga ruticilla). Using long-term data from the nonbreeding grounds and breeding origins estimated from stable hydrogen isotopes in tail feathers, we found that the relationship between annual survival and migration distance is mediated by precipitation, but only during dry years. A long-term drying trend throughout the Caribbean is associated with higher mortality for individuals from the northern portion of the species' breeding range, resulting in an approximate 500 km southward shift in breeding origins of this Jamaican population over the past 30 y. This shift in connectivity is mirrored by changes in the redstart's breeding distribution and abundance. These results demonstrate that the climatic effects on demographic processes originating during the tropical nonbreeding season are actively shaping range dynamics in a migratory bird.


Subject(s)
Passeriformes , Songbirds , Animals , Animal Migration , Caribbean Region , Population Dynamics , Seasons
2.
Ecology ; 104(2): e3938, 2023 02.
Article in English | MEDLINE | ID: mdl-36458375

ABSTRACT

Migratory birds that experience poor overwintering conditions are often late to arrive at the breeding grounds, which is known to depress individual fitness. Despite the importance of this carryover effect, few studies have investigated how individuals can modify migratory behaviors en route to reduce delays on arrival and whether accelerating migration incurs survival costs. To examine this, we used Motus Wildlife Tracking System to track individual American redstarts (Setophaga ruticilla) as they migrated from wintering grounds in Southwest Jamaica through Florida en route to their breeding areas. We leveraged long-term data on spring departure timing and breeding latitude to quantify the relative departure dates (early vs. delayed) of tagged individuals, which we then related to individual migration rates and apparent annual survival. Compared to those initiating migration earlier, individuals that departed relatively late (10-day delay) migrated at a 43% faster rate, which decreased their annual survival by 6.3%. Our results are consistent with the hypothesis that spring migrants use speed to compensate for departure delays despite incurring survival costs. This compensatory behavior may potentially underly differential survival during spring migration and may be particularly widespread across short-lived migratory birds generally considered time-constrained.


Subject(s)
Animal Migration , Passeriformes , Humans , Animals , Seasons , Animals, Wild , Breeding
3.
Biol Lett ; 14(12): 20180741, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30958242

ABSTRACT

Insect migration is globally ubiquitous and can involve continental-scale movements and complex life histories. Apart from select species of migratory moths and butterflies, little is known about the structure of the annual cycle for migratory insects. Using stable-hydrogen isotope analysis of 852 wing samples from eight countries spanning 140 years, combined with 21 years of citizen science data, we determined the full annual cycle of a large migratory dragonfly, the common green darner ( Anax junius). We demonstrate that darners undertake complex long-distance annual migrations governed largely by temperature that involve at least three generations. In spring, the first generation makes a long-distance northbound movement (further than 650 km) from southern to northern range limits, lays eggs and dies. A second generation emerges and returns south (further than 680 km), where they lay eggs and die. Finally, a third resident generation emerges, reproducing locally and giving rise to the cohort that migrates north the following spring. Since migration timing and nymph development are highly dependent on temperature, continued climate change could lead to fundamental changes in the biology for this and similar migratory insects.


Subject(s)
Animal Migration , Life Cycle Stages , Odonata/physiology , Animals , Hydrogen , Isotopes , North America , Odonata/growth & development , Seasons
4.
Ecol Evol ; 7(11): 3847-3855, 2017 06.
Article in English | MEDLINE | ID: mdl-28616181

ABSTRACT

Determining the geographic connections between breeding and nonbreeding populations, termed migratory connectivity, is critical to advancing our understanding of the ecology and conservation of migratory species. Assignment models based on stable isotopes historically have been an important tool for studying migratory connectivity of small-bodied species, but the low resolution of these assignments has generated interest into combining isotopes with other sources in information. Abundance is one of the most appealing data sources to include in isotope-based assignments, but there are currently no statistical methods or guidelines for optimizing the contribution of stable isotopes and abundance for inferring migratory connectivity. Using known-origin stable-hydrogen isotope samples of six Neotropical migratory bird species, we rigorously assessed the performance of assignment models that differentially weight the contribution of the isotope and abundance data. For two species with adequate sample sizes, we used Pareto optimality to determine the set of models that simultaneously minimized both assignment error rate and assignment area. We then assessed the ability of the top models from these two species to improve assignments of the remaining four species compared to assignments based on isotopes alone. We show that the increased precision of models that include abundance is often offset by a large increase in assignment error. However, models that optimally weigh the abundance data relative to the isotope data can result in higher precision and, in some cases, lower error than models based on isotopes alone. The top models, however, depended on the distribution of relative breeding abundance, with patchier distributions requiring stronger downweighting of abundance, and we present general guidelines for future studies. These results confirm that breeding abundance can be an important source of information for studies investigating broad-scale movements of migratory birds and potentially other taxa.

5.
Nat Commun ; 8: 14895, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406155

ABSTRACT

Migratory animals are threatened by human-induced global change. However, little is known about how stopover habitat, essential for refuelling during migration, affects the population dynamics of migratory species. Using 20 years of continent-wide citizen science data, we assess population trends of ten shorebird taxa that refuel on Yellow Sea tidal mudflats, a threatened ecosystem that has shrunk by >65% in recent decades. Seven of the taxa declined at rates of up to 8% per year. Taxa with the greatest reliance on the Yellow Sea as a stopover site showed the greatest declines, whereas those that stop primarily in other regions had slowly declining or stable populations. Decline rate was unaffected by shared evolutionary history among taxa and was not predicted by migration distance, breeding range size, non-breeding location, generation time or body size. These results suggest that changes in stopover habitat can severely limit migratory populations.


Subject(s)
Animal Migration , Charadriiformes , Ecosystem , Oceans and Seas , Animals , Birds , Breeding , China , Environment , Human Activities , Population Dynamics , Seasons
6.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26136445

ABSTRACT

Our understanding of when natural populations are regulated during their annual cycle is limited, particularly for migratory species. This information is needed for parametrizing models that can inform management and conservation. Here, we use 14 years of data on colour-marked birds to investigate how conspecific density and habitat quality during the tropical non-breeding period interact to affect body condition and apparent annual survival of a long-distance migratory songbird, the American redstart (Setophagaruticilla). Body condition and survival of birds in high-quality mangrove habitat declined as density increased. By contrast, body condition improved and survival did not vary as density increased in adjacent, lower quality scrub habitat, although mean condition and survival were almost always lower than in mangrove. High rainfall enhanced body condition in scrub but not in mangrove, suggesting factors such as food availability outweighed consequences of crowding in lower quality habitat. Thus, survival of overwintering redstarts in mangrove habitat, disproportionately males,appears to be regulated by a crowding mechanism based on density-dependent resource competition. Survival of individuals in scrub, mostly females, appears to be limited by density-independent environmental factors but not regulated by crowding. The contrasting effects of density and food limitation on individuals overwintering in adjacent habitats illustrate the complexity of processes operating during the non-breeding period for migratory animals, and emphasize the need for long-term studies of animals in multiple habitats and throughout their annual cycles.


Subject(s)
Animal Migration , Ecosystem , Songbirds/physiology , Animals , Female , Jamaica , Male , Population Density , Reproduction , Seasons
7.
Oecologia ; 172(2): 595-605, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23161154

ABSTRACT

Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east-west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.


Subject(s)
Animal Migration/physiology , Reproduction/physiology , Songbirds/physiology , Alberta , Animals , Female , Jamaica , Mexico , Ontario , Oviposition , Rain , Seasons , Sexual Behavior, Animal , Weather
8.
PLoS One ; 7(4): e35969, 2012.
Article in English | MEDLINE | ID: mdl-22558286

ABSTRACT

Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover.


Subject(s)
Biota , Birds/growth & development , Conservation of Natural Resources , Rain , Animals , Geography , Models, Biological , Nitrates/analysis , Nitrogen/analysis , Oxygen/analysis , Solubility , United States , Water Quality
9.
Proc Biol Sci ; 278(1723): 3437-43, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21450737

ABSTRACT

Climatic warming has intensified selection for earlier reproduction in many organisms, but potential constraints imposed by climate change outside the breeding period have received little attention. Migratory birds provide an ideal model for exploring such constraints because they face warming temperatures on temperate breeding grounds and declining rainfall on many tropical non-breeding areas. Here, we use longitudinal data on spring departure dates of American redstarts (Setophaga ruticilla) to show that annual variation in tropical rainfall and food resources are associated with marked change in the timing of spring departure of the same individuals among years. This finding challenges the idea that photoperiod alone regulates the onset of migration, providing evidence that intensifying drought in the tropical winter could hinder adaptive responses to climatic warming in the temperate zone.


Subject(s)
Animal Migration , Climate Change , Rain , Seasons , Songbirds/physiology , Temperature , Animals , Arthropods/physiology , Biomass , Jamaica , Longitudinal Studies , Time Factors
10.
Biol Rev Camb Philos Soc ; 86(4): 928-46, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21489123

ABSTRACT

Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.


Subject(s)
Animal Migration , Birds/physiology , Climate Change , Animals , Biological Evolution , Seasons
11.
Proc Natl Acad Sci U S A ; 105(8): 2929-33, 2008 Feb 26.
Article in English | MEDLINE | ID: mdl-18287030

ABSTRACT

Natal dispersal, the process through which immature individuals permanently depart their natal area in search of new sites, is integral to the ecology and evolution of animals. Insights about the underlying causes of natal dispersal arise mainly from research on species whose short dispersal distances or restricted distributions make them relatively easy to track. However, for small migratory animals, the causes of natal dispersal remain poorly understood because individuals are nearly impossible to track by using conventional mark-recapture approaches. Using stable-hydrogen isotope ratios in feathers of American redstarts (Setophaga ruticilla) captured as immature birds and again as adults, we show that habitat use during the first tropical nonbreeding season appears to interact with latitudinal gradients in spring phenology on the temperate breeding grounds to influence the distance traveled on the initial spring migration and the direction of natal dispersal. In contrast, adult redstarts showed considerable site fidelity between breeding seasons, indicating that environmental conditions did not affect dispersal patterns after the first breeding attempt. Our findings suggest that habitat occupancy during the first nonbreeding season helps determine the latitude at which this species of Neotropical-Nearctic migratory bird breeds throughout its life and emphasize the need to understand how events throughout the annual cycle interact to shape fundamental biological processes.


Subject(s)
Animal Migration , Ecosystem , Environment , Songbirds/physiology , Animals , Feathers/chemistry , Geography , Jamaica , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...